Japan Display Inc. Environmental Data Collection

Here are the environmental data results for JDI (domestic bases) for fiscal year 2023.

1. Environmental Measurement Data

Wastewater Management

Living environment items

Name of	Discharge	BOD ^{*1} (mg/L)						CC	D*2 (mg/	L)			S	SS ^{*3} (mg/L	_)		F	łydrogen io	n concent	ration (pF	1)
plant	location	Legal	JDI standards	Minimum value	Average	Maximum value	Legal limit	JDI standards	Minimum value	Average	Maximum value	Legal limit	JDI standards	Minimum value	Average	Maximum value	Legal limit	JDI standards	Minimum value	Average	Maximum value
Mobara (1)	River	10	8	<0.5	0.7	1.2	25	20	2.9	3.1	3.3	20	15	<0.5	2	5	5.8~8.6	6.0~8.4	7.3	7.5	7.7
Mobara (2)	River	10	8	<0.5	0.6	1.4	25	20	2.4	2.6	2.8	20	15	<0.5	1	5	5.8~8.6	6.0~8.4	7.0	7.2	7.4
Tottori	Sewer	600	450	31	59	130	_	_	-	_	-	600	300	5	12	27	5.0~9.0	6.0~8.7	6.9	7.1	7.3
Higashiura	River	15	12	<0.5	0.8	0.8	10	8	0.9	2.0	3.4	15	12	<1.0	5	10	5.8~8.6	6.0~8.3	7.1	7.3	7.5
Ishikawa	River	80	29	1.4	2.8	4.1	160	125	1.2	1.6	1.9	120	60	1	3	4	5.8~8.6	6.1~8.2	7.2	7.4	7.4

Name of	Diaghayra		Normal-he	Normal-hexane extracts(mg/L)				Ph	enols (mg/	/L)			Pho	sphorus (m	g/L)		Nitrogen (mg/L)				
	Discharge location	Legal	JDI standards	Minimum value	Average	Maximum value	Legal limit	JDI standards	Minimum value	Average	Maximum value		JDI standards	Minimum value	Average	Maximum value		JDI standards	Minimum value	Average	Maximum value
Mobara (1)	River	2	1.6	<0.5	<0.5	<0.5	0.50	0.40	<0.05	<0.05	<0.05	8	6.4	<0.1	<0.1	<0.1	100	80	4.3	8.8	10
Mobara (2)	River	2	1.6	<0.5	<0.5	<0.5	0.50	0.40	<0.05	<0.05	<0.05	8	6.4	<0.1	<0.1	<0.1	100	80	14	17.1	22
Tottori	Sewer	5	2.5	<1.0	1.01	1.1	5	2.5	<0.1	<0.1	<0.1	ı	_	1	ı	-	-	-	_	ı	-
Higashiura	River	2	1.6	<0.5	<0.5	<0.5	5	4	<0.05	<0.05	<0.05	1	0.8	0.02	0.14	0.48	10	8	0.5	1.1	1.9
Ishikawa	River	5	4	<0.5	<0.5	<0.5	5	4	<0.1	<0.1	<0.1	16	14.9	0.3	1.9	3.6	120	95	3.7	4.3	4.8

Hazardous substances

i iazai uous	al dode substantos																			
Name of	Discharge						ı	Boron and i	ts compou	ınds (mg/L)		Fluorine and	d its compo	ounds (mg/L)					
plant	location	Legal limit	JDI standards	Minimum value	Average	Maximum value	Legal limit	JDI standards	Minimum value	Average	Maximum value	Legal limit	JDI standards	Minimum value	Average	Maximum value				
Mobara (1)	River	100	80	3.9	8	10	10	8	0.04	0.07	0.11	8	6.4	0.3	0.5	0.7				
Mobara (2)	River	100	80	12	15	18	10	8	0.10	0.25	0.52	8	6.4	0.9	2.0	2.3				
Tottori	Sewer	380	190	0.9	2.5	5.2	10	5	<0.2	<0.2	<0.2	8	5	1.2	1.7	2.5				
Higashiura	River	100	80	0.3	0.8	1.5	10	8	<1.0	<1.0	<1.0	8	6.5	0.3	0.4	0.9				
Ishikawa	River	100	80	2.0	3.0	4.0	10	8	<0.1	<0.1	<0.1	8	6	0.3	0.5	0.8				

Air Emissions Management

Name of				te matter*	(g/Nm ³)	Nitroge	n oxides *5	(vol ppm)	Sulfur oxides *6 (Nm ³ /h)			
plant	Once-through boiler	Number	Legal limit	JDI standards	Result	Legal limit	JDI standards	Result	Legal limit	JDI standards	Result	
Mobara	Once-through boiler	20	0.1	0.01	<0.01	150	120	17	_	-	-	
Tottori	Once-through boiler	7	0.1	0.05	<0.001	150	75	52	_	-	-	
Tottori	Absorption chiller	2	-	-	-	-	-	-	-	-	-	
Higashiura	Flue and smoke tube boiler	2	0.1	0.08	0.003	150	120	30	-	-	-	
nigasriiura	Multitubular once-through boiler	7	0.1	0.08	0.003	150	120	46	-	-	-	
	Once-through boiler	3	0.3	0.15	0.006	180	105	74	2.05	0.28	0.012	
Ishikawa	Flue and smoke tube boiler	2	0.3	0.15	0.012	180	164	74	6.4	3.21	0.128	
	Gas turbine	4	0.05	0.025	0.003	70	58	42	9.53	5	0.147	

(13/20 units suspended)

(2 units suspended)

- *4 "Particulate matter" refers to soot and other solid particulate matter resulting from combustion.
- *5 "Nitrogen oxides" is a generic term that refers to compounds that arise from a combination of nitrogen atoms (N) and oxygen atoms (O). *6 "Sulfur oxides" is a general term for sulfur trioxide and other compounds of sulfur and oxygen, particularly sulfur dioxide (sulfurous acid gas).

Noise/vibration management:

Unit: dB

Name of plant	Category		Time period	Legal limit	JDI standards	Actual (maximums)
		Morning	06:00~08:00	65	60	55
	Noise	Daytime	08:00~19:00	70	65	61
	Noise	Evening	19:00~22:00	65	60	56
Mobara		Night	22:00~06:00	60	57	55
		Daytime	07:00~22:00	65	60	60
	Vibration	Night	22:00~07:00	60	55	37
		INIgrit	22.00~07.00	0	60 ^{*7}	60 ^{*7}
		Morning	06:00~08:00	70	70	52
		Worrling	00.00***08.00	65	65	40
		Daytime	08:00~19:00	70	70	46
	Noise	Daytille	08.00* 19.00	65	65	48
*8	Noise	Evening	19:00~22:00	70	70	42
Tottori*8		Lveriirig	19.00* - 22.00	65	65	38
		Night	22:00~06:00	65	65	42
		INIgrit	22.00**00.00	50	50	38
	Vibration	Daytime	08:00~19:00	65	65	34
	VIDIALION	Night	19:00~08:00	60	60	33
		Morning	06:00~08:00	55	55	52
	Noise	Daytime	08:00~19:00	60	60	51
Higashiura	Noise	Evening	19:00~22:00	55	55	54
Tilgastilura		Night	22:00~06:00	50	50	49
	Vibration	Daytime	07:00~22:00	60	40	24
	Vibration	Night	22:00~07:00	55	40	24
		Morning	06:00~08:00	60	60	50
	Noise	Daytime	08:00~19:00	65	65	57
Ishikawa	Noise	Evening	19:00~22:00	60	60	52
isiinawa		Night	22:00~06:00	0~22:00 60 0~06:00 50	50	50
	Vibration	Daytime	07:00~22:00	65	50	<30
w7 A J J L L L		Night	22:00~07:00	60	50	<30

 $^{{\}bf *7}~{\sf Additional}~{\sf measurement}~{\sf points}~{\sf from}~{\sf FY2023}.$

^{*3} Suspended Solids

^{\$8} Noise regulation areas are of two types, differing by position at the plant ground boundary.

Odor Management

Name of plant	Items	Compounds	Units	Legal limit	JDI standards	Results	Compo	ounds	Units	Legal limit	JDI standards	Results	Comp	oounds	Units	Legal limit	JDI standards	Results
Mobara	No. 1 regulation (site boundary)	-	Odor inde	14	14	14				-					-	-		
	No. 1 regulation	Ammonia	ppm	5	5	<0.1	Hydroger	n sulfide	ppm	0.2	0.2	<0.002	Ху	ene	ppm	1	1	<0.1
	(site boundary)	Toluene	ppm	10	10	<1									-	_		
		Ammonia	m3/h	710	710	<0.0020		Exhaust tower for organic abatemen	m3/h	1,200	1,200	_		Exhaust tower for organic abatemen	m3/h	120	120	_
Tottori	No. 2 regulation (gas outlet)						Toluene	Air release port for organic abatement	m3/h	890	890	<0.019	Xylene	Air release port for organic abatement	m3/h	89	89	<0.0019
				_				Purge gas outlet for organic abatement	m3/h	1,100	1,100	_		Purge gas outlet for organic abatement	m3/h	110	110	_
	No. 3 regulation (effluent)	Hydrogen sulfide	mg/L	0.2	0.2	<0.0005				_						-		
Higashiura	No. 1 regulation (site boundary)	-	Odor	18	15	<10							-					
	No. 3 regulation (effluent)	-	inde	34	27	<3												
		Ammonia	ppm	2	1	<0.1	Methyl m	ercaptan	ppm	0.004	0.0012	<0.0002	Hydroge	n sulfide	ppm	0.06	0.018	<0.0005
		Methyl sulfide	ppm	0.05	0.01	<0.0005	Methyl o	disulfide	ppm	0.03	0.009	<0.0009	Trimeth	nylamine	ppm	0.02	0.006	<0.0005
		Propionic acid	ppm	0.07	0.03	<0.005	n-butyr	ric acid	ppm	0.002	0.001	<0.0002	n−vale	ric acid	ppm	0.002	0.0009	<0.0002
	No. 1 regulation	Isovaleric acid	ppm	0.004	0.001	<0.0002	Acetalo		ppm	0.1	0.03	<0.005		aldehyde	ppm	0.1	0.03	<0.005
	(site boundary)	n-butyraldehyde	ppm	0.03	0.009	<0.001	Isobutyl a		ppm	0.07	0.021	<0.002		aldehyde	ppm	0.02	0.006	<0.002
Ishikawa		Isovaleraldehyde	ppm	0.006	0.0018	<0.001	Isobutyl	alcohol	ppm	4	1.2	<0.09	Ethyl	acetate	ppm	7	2.1	<0.3
		Methyl isobutyl ketone	ppm	3	0.9	<0.1	Tolu	ene	ppm	30	9	<1	Sty	rene	ppm	0.8	0.24	<0.04
		Xylene	ppm	2	0.6	<0.1												
	No. 3 regulation (effluent)	Methyl mercaptan	mg/L	0.01	0.003	<0.001	Hydroger	n sulfide	mg/L	0.07	0.02	<0.005	Methy	sulfide	mg/L	0.3	0.07	<0.01
	140. 0 regulation (emident)	Methyl disulfide	mg/L	0.4	0.09	<0.01				-					-	-		

2. Substances Subject to Notification under PRTR

Table of Substances Subject to PRTR Notification

		Quantity o	dia a b a w m a d			Quantity t	ranafarrad	Unit: kg	
		Quantity	ilscharged			Quantity t	ransterred		
Chemical substances	То	air	To public w	ater bodies	Ser	wer	Off-site		
	FY2022	FY2023	FY2022	FY2023	FY2022	FY2023	FY2022	FY2023	
acetic acid 2-Methoxyethyl	1	0	0	0	0	0	0	0	
2-Aminoethanol	40	40	73	69	0	0	0	0	
Hydrogen fluoride and its water-soluble salts	911	564	0	0	0	0	560	0	
Boron and its compounds	0	0	0	0	0	0	0	0	
Indium and its compounds	0	0	13	0	0	0	750	0	
Molybdenum and its compounds	0	0	384	270	0	0	5,201	3,300	
Butyl cellosolve	-	280	-	0	-	0	-	890	
Diethylene glycol monobutyl ether	-	40	-	* ⁹ 8,100	-	4,000	-	0	
Tetramethylammonium hydroxide	-	159	-	1,100	-	37,000	-	151,300	
N-Methyl-2-pyrrolidone	-	1,760	-	480	_	0	-	13,000	

Since the actual quantities discharged into soil and disposed in landfill for the concerned sites were zero, these were not recorded.

3. Environmental Accounting

Summary of Environmental Conservation Costs in Japan

Units: 1 million yen

Major category	Items	Details Details	Investment	Expenses
	Pollution prevention cost	Costs for preventing air pollution, water pollution, soil pollution, noise, foul odors, and more	1.4	1,905
Environmental conservation costs *10 (cost within	Global environmental conservation cost	Costs for preventing global warming, conserving energy, preventing the depletion of the ozone layer, and more	7.3	31
business area)	Resource recycling costs	Costs for the efficient utilization of resources, as well as the recycling, treatment and disposal of industrial waste and general waste	0	636
		Total	8.7	2,573

^{*10} Analysis and measurement costs related to the environment are also included in the costs within business areas.

Summary of Environmental Conservation Effects in Japan

Major categories	Categories	I tems	Effect	Units
Environmental conservation effects	Environmental conservation effects related to environmental	Emissions of energy-derived CO2	75	million t-CO2
(physical unit)	burdens and waste *11	Emissions of waste, etc.	4,985	t
Economic benefits associated with environmental conservation activities	Operating revenue related to environmental burdens and waste	Revenue from the sale of valuables	14	1 million yen

^{*11} In order to consider the changes in the production output, values were derived using the following formula, which was established by referring to the Environmental Accounting Guideline.

Effects = emissions from the previous fiscal year x (glass substrate area from the fiscal year in question) - emissions from the fiscal year in question

^{*9} There was an error in the reported emissions of Diethylene glycol monobutyl ether (to public water bodies) in fiscal year 2023, so JDI has corrected that figure.

XAlthough the Higashiura Engineering Center will cease production at the end of March 2023, we continued to conduct environmental measurements based on pollution prevention agreements in fiscal 2023, and have included these in our environment-related data collection.